Chapter 6. AC Circults




Chapter 6. Outline

AC Steady State response = Forced Response

|

k,coswt+ k,sinwt <> K, coswt + K, sin wt
X cos(ot+¢)<> X cos(wt+¢")

Phasor representation

X=X /¢ X=X'L§

|

With Phasor Notations, circuit equations become algebraic.
Thus, all resistive circuit analysis methods are applicable.
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Resistance = Impedance

Conductance =2 Admittance

Complex, frequency dependence




Phasors and the AC Steady State




AC Circuits

e A stable, linear circuit operating in the steady
state with sinusoidal excitation (i.e., ssnusoidal
steady state).

e Complete response = forced response + natural
response.

¢ |nthe steady state, natural response - O.




TABLE 5.3 Selected Trial Solutions for Forced

Response
[ ye(2)
k, (a constant) K, (a constant)
k]t Kt + Kﬁ
,%23 a¥ KZE “

ks cos wt + k, sin wt K, cos wt + K, sin wt

l l

A cos(wt +q, ) A, cos(wt +0,)

Same freguency, different amplitudes and phases




Sinusoids

X, cos wt X, sin wt
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(a) Cosine wave (b) Sine wave
e Three parameters are needed to determine a sinusoid.
o X(t)=X cogwt+f)=Re X g@Wt+1)],

e X . amplitude, w=2pf=2p/T. angular frequency, f :
phase angle (radian).




Phasors

,/'\X’” ANAN

e Thethree parameters can be represented by arotating
phasor in atwo-dimensional plane.

e Atagiventime(e.g., t=0), the nonrotating phasor Is
represented by X =X _bf .

e The freguency information is not included.




AC Forced Response

e The forced response of any branch variable
(current or voltage) Is at the same frequency as
the excitation frequency w for alinear circuit.

¢ |n other words, any branch variable has the
general form y(t)=Y,cos(wt+f,).

e Circuit analysis becomes manipulation of
complex numbers.




Complex Numbers in the Complex Plane
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Complex Addition and Subtraction

A+ B

Im [A] <

Im [B] <

Re




Complex Conjugate
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Complex Multiplication

A>B=(ab - ab)+j>(ab - ab)=Re AB|+Im|AB]
if kisreal,Re[kB] = k Re[ B], Im[kB] = k Im[B]




Complex Division (Rationalization)

B_BA _ba+ha .ba-ba

ATAN aird | aal




Complex Number in Exponential Form

e Eulersformulaa €
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e Complex number in exponential form: A=|Ae” 2@
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Phasor Representation

e A sinusoid can be represented by a phasor:

X cogwt +f ) = Rex JWt fU_R Xle JWtu—ReSXeJWt“
U U Ul

e The sum of two sinusoids at the same frequency can be
represented by another phasor. The new phasor is
simply the sum of the two original phasors.
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Phasor Representation

e The steady-state response of any branch variablein a
stable circuit with a sinusoidal excitation will be
another sinusoid at the same freguency (forced
response in Chapter 5)

e Kirchhoff’slaws hold in phasor form (only additions
are involved).




Phasor with Differentiation

Jwt+f 0
c ReeXe - edxe™ i
U= Reg i=Rd jwxe"" |
dt & dt g
X LY jwX




Example 6.3: Parallel Network with an AC

Voltage Source
Im 1
=
v'F yie

@ <50 == 25uF

(a) RC circuit in the ac steady state (b) Phasor diagram for the currents
v(t) = 30cos(4000t +20%) b V = 30D 20°
=Vp =Y
R 5 % 5 | =1,+1.=6.71D46.6(A

(1)=C d‘:;t(t) b I =CxjwV (1) = 6.71c0S(4000 + 46.6°)(A)




Example 6.4: Parallel Network with an
AC Current Source

| * L i Lic
@ v <50 == 25 uF

O ®

i(t) =3cos4000t b | =3 1 =3=1x+1;=(02+)>01)V
\Vj 3
Y= V =

e =7 le =CxwV =T 02+0.1

v(t) =13.4c05(4000t - 26.6°)(V)




|mpedance and Admittance




Phasor Representation

e Under ac steady-state, both the voltage and the
current of a branch are snhusoids at the same
frequency.
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L
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i(t) =1 costut +f ) = Re8|e1""t§

v(t) =V, cos(wt +f V) = Reg\ie




Resistors

e Current and voltage are collinear (in phase).

WU_ 2 Reflel W U= Re RleJWtB

v=Rel/e
e U e U u

V = RI_:VmeV =Rl mei




|nductors

e Current lags voltage by 90 degrees.

jwtu )
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Capacitors

e Current |eads voltage by 90 degrees.
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Phasor Relations (Resistor)
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Phasor Relations (Inductor)

(b) Inductor




Phasor Relation (Capacitor)




|mpedance

¢ |n genera, we can define a quantity Z and
Ohm'’s law for ac circuitsas V =ZI

/5 =R

Q
Z, = jwL =wLP90®

Z. =1/ jwC =1/wCPB - 90°




Time Domain vs. Freguency Domain
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(b) Frequency-domain diagrams




Admittance

e Similarly, another quantity admittance Y can
be defined.

YO1/Z

=YV




Equivalent Impedance and Admittance

I 1 Vo I
> + -+ - S

O Z]. Z2 O ¢ L

+ +

+
4 ZN| Vy 4 Z) 47_11 Zy %7_12 ZN 47_11\7
(_3 ; \ 4 \
(a) Impedances in series (b) Impedances in parallel

*Series equivalent impedance:  Zgy =232yt 2y
V=V +Vo+-+VN)
*Parallel equivalent impedance: Ypar =Yp Y2t Yy

(L=11+lp+-+IN)




Load Network

+o$lm

Load
ZE"I—I network
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|mpedance and Admittance

¢ |mpedance and admittance are complex
functions of frequency.

Z =Z(jw) =Rdz]+ jIm[z]= Rw) + jX ()
Res stgnce (W Regctance (W)

¢ |nductors and capacitors are reactive elements,
Inductive reactance Is positive and capacitive
reactance is negative.




|mpedance and Admittance

Y =Y(jw) =RelY|+ jIm[Y]|=G(w) + jB(w)
Conductance  Susceptance
(Siemens) (Siemens)
¢ |nductors and capacitors are reactive elements,
Inductive reactance Is positive and capacitive
reactance is negative.
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lmpedance Triangle

| Z|

Z

> ImlZ] =X (w)

Re[Z]?z R(w)

Re




Example 6.6: Impedance Analysis of a
Parallel RC Circuit.

1
—>
O @
V=30V /20°
Zp=5Q <& Zy=-10Q == —2Q
® = 4000
O o Z
(a) Frequency-domain circuit diagram (b) Impedance triangle
Z =5|- j10=4.47W\D - 26.6°
1

=1, 1 —02+j015=0224926.6°
5 - 10

v
Z

=VY =6.71AP46.6°




Example 6.7: Frequency Dependence
of a Parallel RC Network.
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Z(jw) = 2.2 :R- jWCR2
1 Z.+Z. 1+(WCR)
1% < R = — R
— C — —
JO& RWw) =Re[Z] 1+ (WCR)?
_ _ _ WCR’
o 5 Xy =Imlz] = weR)?




Example 6.8: AC Ladder Calculations

e AC |ladder networks can be analyzed by series-parallél
reduction (by replacing resistance with impedance).

+ UL(If)_ L
- JW
+ 200 mH
it) N

@ v(t) 40 kQ < 5kQ 2 nF == vl

)
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(a) AC ladder network with a current source

YL
o ° ) o
I=10mA [O° + 710 kQ I=10mA /0° +
- - 4.8 kQ
+
@ v 40 kQ 5kQ  10kQ == Vo) @ v
- j6.4 kQ
o = 50 krad/s - ® = 50 krad/s -
4 —j2 kQ
(b) Frequency-domain diagram (¢) Equivalent impedances

1(t) =10cos50000t(mA)




(Cont.)
80vD53.1°

e 6.8

Exampl

48+ |64 =

V=<2

j10
- j2)+ 10~

89.4vD79.7°

V =

(4

4- j2
(4- j2)+ {10

V =40VD - 36.9°

(h) Voltage waveforms

(a) Voltage phasors




AC Circuit Analysis




AC Circuit Analysis

e Sources at the same frequency:

— Phasor transform method: the time domain sinusoids
are transformed to the frequency domain and
represented by phasors.

Time domain - Frequency domain




AC Circuit Analysis

e Sources at the same frequency:

- With the transformation, all resistive circuit analysis
techniques are applicable. Resistance is replaced by
Impedance and conductance is replaced by admittance.

Proportionality
Thévenin-Norton
Node Analysis
Mesh Analysis




AC Circuit Analysis

e Sources at the same frequency:

- After analysis, the resultant phasors are converted back
to the time-domain sinusoids.

Freguency domain = Time domain




AC Circuit Analysis

e Sources a different frequencies:

- Dueto the linearity, the proportionality method is still
applicable.

— The phasor analysis is performed at each individual
frequency




Example 6.9: AC Network with a
Controlled Source

i 60 3v, 120

) i1 _ Letl, =1D0°(=1+j0)

@ 250 uF =< 8 mH @vx \/1 :12_|_ 18
0 |_1:\11/('j4):'2+j3
(a) AC network with a controlled source | = |1 + | , =_-1+ 13
I V=6l-3/,+V,=6+)2

Y W B Z=V/l=-i2
o /\, - + ® — = -
v N ny EY| =
® HAeF VY Bed e | =y /7 =10ADI0]
® = 1000

1,=(,/1)] =11.4AP105.3°
i, =11.4c0s(1000t +105.3°) A

(b) Frequency-domain diagram

v =20c0s1000t(V) uUse proportionality




Example 6.10: Phase-Sift Oscillator

Positive feedback connection

e ———
: Phase-shift network :
10— '
+ +

C L

Vin R 2 R 2 Uy
_ _ \leifier
O O O

out

(a) Phase-shift oscillator circuit \

e
+ +
—> llé, 12 J
Iy +1o + -
Vin RV, <R Vy
o N . o

(h) Phase-shift network in the frequency domain

+ o QOscillator: Generator a

sinusoidal output
without an independent
Input source with initial
stored energy.

Design goal: At one
particular frequency,

Vout: Vi n-




Example 6.10: (Cont.)

J/oC joL
o
+ +

—> _1147 a?

1y + 1 + -

Vin R< V; <R Vi
o N )\ o

(b) Phase-shift network in the frequency domain

Useproportionality and let |, =1,

Vin=p+ 8L 0 & - 2 YR
vV, eCR g "e wC g

Oscillation requires :wL =2/wC

Woee =2/ LC

whenw =w .,




Superposition

e An ac source network is any two-terminal
network that consists entirely of linear
elements and sources. If there are more than
one independent source, all of them must be at
the same frequency so that the phasor method

can be applied.
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Frequency Domain Thévenin Parameters

e Frequency-domain Thevenin parameters:
ne open-circuit voltage phasor: 'V oc
ne short-circuit current phasor:
Thevenin impedance: z, =V /1 &
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Example 6.11: Application of an AC
Norton Network

: 2 <280 Q i v Z
e -

Thévenin paramelers, | Maximize \
(_ ySSuicehatwork WithToad impedance Z

= j40/280- j20=20WD73.7°
280
\_/OC = .
280+ j40
V

lc =522 =0495AD - 818"
t

10=9.9vD - 8.13




Example 6.11: (Cont.)

| =
' O
0.495 A /-81.8° : + |
[ |
@ 20:9 73.7° \% Z |
I |
w = 5000 I — I
‘ i
\_ ”_ _ _I
& (b) Norton model
1 1
Vo=t andV=1g/Y,

t
V| is maximum if ‘qu‘ is minimum
Y, = (0.014+G)+ j(B- 0.048)
Y =0+ 0.048S
V =35.4vP - 81.8°




AC Mesh Analysis

e By using phasors, impedance and admittance,
node analysis and mesh analysis are stil|
applicable assuming all independent sources
are at the same frequency.

e AC mesh analysis.

zI=\vel o |z- Z[1)=p ]
o\

with controlled sources
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Example 6.12: Systematic AC Mesh
Analysis

8+ j4
() {)
2 H j 20
[ \ 4 ] [ 4 \ 4
30 /60° 1/0°
A, . =154)26 \ =1+j0
. 10Q 10Q
I
o =10 -
(a) Circuit with v = 30 cos (107 + 60°) V (b) Frequency-domain diagram with
and i=1 cos 10 A one unknown mesh current

Find i,
Two sources at the same frequency




Example 6.12: (Cont.)

8 +j4
{)
7 20
EEEEEE—— ] [
30 /60°
— 15+ 26 4,
O =
N~
I
w =10 -

1/0°
=1+,0
o= p@
1

(b) Frequency-domain diagram with
one unknown mesh current

Single mesh equation: ZI1, =V
Z=8+j4- j10=8- j6W

V. =15+ )26- (- jJ10) =15+ |36V
1, =3.9AP104.3°
i,(t) =3.9cos(10t +104.3°)




AC Node Analysis

YIvV]=|Lg]

Y- VIVI=[T
X

with controlled sources




Example 6.13: Systematic AC Node

Analysis
21:
1

— —O—— -____/_\l____i

jaQ T T T e 1N

v=12Vv/0° : -6 Q=
O u g r

! 20,

5 |. I -

Constraint equation: 1=(V-V,)/|4




Example 6.13: (Cont.)
] L& 15 -2

208&-2 3+j34

el +V/j4u & J9u ¢ j05 Ouev,u
& o2 §T€ielTE jos ol !
6- ] -2 0V, u_ eleOu
- 2+j10 3+j308/,8 & j20 !
10.4/D - 22.3°
115AE)—31.1°

_Y,
I

—
Im

|— |< (D:(D> (D~

Z, =9.03WD8.8° =8.92 + j1.39W




Chapter 6. Problem Set

o /,17,24,32, 36,41, 44, 47,51, 53, 5/, 59




